WHAT IS GOING ON?
It seemed likely that the patient's severe neutropenia underlay his recurring episodes of omphalitis. The differential diagnosis of severe neutropenia in a newborn includes severe congenital neutropenia; acquired primary bone marrow failure, possibly of viral origin (eg, secondary to HIV, EBV, or CMV infection); severe combined immunodeficiency; agammaglobulinemia; defects of neutrophil adhesion or function; neutropenias associated with metabolic or immunological disorders, such as autoimmune neutropenia of infancy; and neutropenia as one feature of a complex syndrome, such as Shwachman-Diamond syndrome, dyskeratosis congenita, Fanconi anemia, or Chédiak-Higashi syndrome.1
However, other possible causes of recurrent omphalitis were also considered. Either a resistant organism that had not been eradicated or incomplete treatment of the retroumbilical abscess could explain recurrence of the umbilical infection. In addition, we considered the possibility of an abnormal umbilicus, for which the differential diagnosis includes retained umbilical cord remnants, a granuloma, umbilical polyps, and patency of urachal or omphalomesenteric ducts causing fistulas, tracts, or cysts that are prone to infection.
The patient's blood cell counts and bone marrow sample confirmed the diagnosis of severe congenital neutropenia.
SEVERE CONGENITAL NEUTROPENIA: OVERVIEW
The incidence of severe congenital neutropenia (also called simply "congenital neutropenia") is about 1 or 2 cases per million.2 Males and females are affected in equal numbers. The initial clinical features of severe congenital neutropenia include early bacterial infections of the skin and mucosae (eg, omphalitis and paronychias in the neonatal period; recurrent upper and lower respiratory tract infections, sepsis, and failure to thrive in older children).1
Severe congenital neutropenia was first reported in 1956 by Rolf Kostmann, a Swedish pediatrician.1 At the time of Kostmann's report, the agranulocytosis he described as being the causative mechanism was thought to be an acquired condition resulting from toxins or infectious exposures with subsequent bone marrow damage.1 After diligent investigation of medical and histological records as well as patterns of inheritance, Kostmann concluded that the disorder was caused by a single recessive autosomal gene. Today, severe congenital neutropenia is characterized as a group of heterogeneous hematological disorders with different patterns of inheritance, including autosomal recessive, autosomal dominant, and sporadic occurrences.2 The disorder now known as classic Kostmann syndrome is severe congenital neutropenia that has an autosomal recessive inheritance pattern.
Laboratory findings consistent with the diagnosis of severe congenital neutropenia include an ANC of less than 500/μL, mild anemia, thrombocytosis, eosinophilia, monocytosis, and elevated IgG levels. Bone marrow examination reveals maturational arrest of myelopoiesis with depletion of mature neutrophils.1 Later in the disease course, clinical findings may include periodontitis, hepatosplenomegaly, osteoporosis, and secondary malignancies. The cause of the later clinical features is not well understood; they may result from the chronic inflammation of the disease process, an underlying deficiency of antibacterial peptides, or lifelong therapy with recombinant granulocyte colony-stimulating factor (G-CSF).
Most of the patients with severe congenital neutropenia who were initially described by Kostmann died of serious infections in spite of antibiotic therapy.3,4 Bone marrow transplantation was the only treatment option until the late 1980s, when recombinant G-CSF became available.5 The use of G-CSF has markedly improved the clinical outcomes and quality of life for children with severe congenital neutropenia. Data from the Severe Chronic Neutropenia International Registry (note that severe congenital neutropenia is a type of severe chronic neutropenia) show that more than 90% of patients treated with G-CSF have responded with an increased ANC of greater than 1000/μL, fewer infections requiring antibiotics, and fewer hospitalizations.3,4,6
Nonetheless, some authorities have expressed concerns regarding the long-term use of G-CSF because of the perceived increased risk of secondary malignancies.5,6 Although the mechanisms underlying the evolution of secondary malignancies in patients receiving G-CSF are not completely understood, the fundamental stem cell defect seen in severe congenital neutropenia has been suggested as a cause.3,7 Since the use of G-CSF therapy began, the incidence of malignant myeloid disorders in treated patients has been about 10%, with a cumulative incidence of 21% over 10 years.4,5 (Comparisons with the pre–G-CSF era are difficult because many patients from that time did not survive infancy.) Still, G-CSF remains the firstline treatment for most patients. For those who do not respond to G-CSF, hematopoietic stem cell transplant is the only viable option. If treatment with hematopoietic stem cell transplant is successful, the patient's peripheral blood counts normalize and G-CSF treatments are no longer needed.5
IS NEUTROPENIA ALONE TO BLAME?
Although this patient clearly had severe neutropenia, it seemed suspicious that his umbilical cultures continued to grow GI flora. Another abdominal ultrasonogram was obtained to explore the possibility of an intestinal connection with the umbilicus. No such connection was found, nor was there any evidence of retro-umbilical fluid. Subsequently, a voiding cystourethrogram was completed to evaluate for a patent urachus. The patient was found to have grade II vesicoureteral reflux on the right and grade I on the left—but there was no evidence of a persistent urachus. Finally, exploratory surgery was performed, which revealed a patent omphalomesenteric duct; the remnants of the duct were removed from its origin in the ileum.
Thus, while neutropenia had created an environment for opportunistic infections in our patient, the underlying reason for his recurring polymicrobial omphalitis was a persistent omphalomesenteric duct.
PERSISTENT OMPHALOMESENTERIC DUCT: AN OVERVIEW
"Yolk stalk," "vitelline duct," and "omphalomesenteric duct" are synonymous terms that identify the duct that arises from the yolk sac and transfers nutrients to the developing embryo during early gestation. Once the placenta is well established, the sac atrophies and the stalk normally detaches from the midgut by week 6.8 Partial or complete failure of involution results in various residual structures that can form fistulas, sinuses, cysts, or diverticula.9 In 2% of patients, the proximal portion of the yolk stalk remains patent, forming a Meckel diverticulum.10 In this patient's case, the entire duct remained patent from the distal ileum to the external umbilicus, a finding referred to as a persistent omphalomesenteric duct.
Overall, vitelline duct remnants are very rare, with Meckel diverticulum being by far the most common type. The usual presentation of a persistent omphalomesenteric duct is fecal umbilical drainage; however, persistent infection (as in this patient), intestinal obstruction, intussusception through the duct, and prolapse of the duct leading to polyps have also been reported.9,11 The recommended diagnostic imaging is fluoroscopy or sinography.12 Treatment requires surgical excision of the duct remnants.9
OUTCOME OF THIS CASE
This infant had recurrent, polymicrobial omphalitis secondary to a persistent omphalomesenteric duct; the omphalitis was exacerbated by severe congenital neutropenia. A 10-day course of intravenous meropenem was completed before discharge from the children's hospital; the antibiotic therapy once more resulted in full resolution of the omphalitis and otitis. Treatment with GCSF was started in an effort to encourage neutrophil production. The patient has been followed in the hematology/oncology outpatient clinic; he has had a poor response to the G-CSF despite repeated dosage increases. Results of a second bone marrow biopsy, 3 months after his initial study, were unchanged from those seen with the first sample. Most recently, at 6 months of age and after 4 months of daily G-CSF injections, the patient's ANC was 410/μL.